Negative Binomialr≥2r \geq 2r≥2 X−# of trials until the rth successX - \text{\# of trials until the rth success}X−# of trials until the rth success x∈Z+x \in \mathbb{Z}^+x∈Z+ x∈{r, r+1, r+2,⋯ }x \in \{r, ~r+1, ~r+2, \cdots\}x∈{r, r+1, r+2,⋯} P(X=x)=(x−1r−1)pr−1(1−p)x−rpP(X=x) = {{x-1} \choose {r-1}} p^{r-1} (1-p)^{x-r} pP(X=x)=(r−1x−1)pr−1(1−p)x−rp Where (x−1r−1)pr−1(1−p)x−r{{x-1} \choose {r-1}} p^{r-1} (1-p)^{x-r}(r−1x−1)pr−1(1−p)x−r is the r−1r-1r−1 successes out of x-1 trials, and ppp is the xxxth trial of rrrth success.