SA
메인 내용으로 이동

Conditional Probability

In Probability,

In the real world, probabilities are not straightforward, like PQP \rightarrow Q. Therefore we translate into P(BA)1P(B|A) \approx 1. If AA happens, then B is most likely to happen. This defines as

P(BA)=P(AB)P(A)P(B|A) = {P(A \cap B) \over P(A)}

This means

P(AB)=P(BA)P(A){P(A \cap B)} = P(B|A) P(A)

P(BA)P(B|A) is the likelihood and P(A)P(A) is the prior.

이 문서를 언급한 문서들