메인 내용으로 이동

KSAT Benchmark

Let tt be a real number. Define the function f(x)f(x) by

f(x)={1xt,if xt1,0,if xt>1.f(x) = \begin{cases} 1 - |x - t|, & \text{if } |x - t| \le 1,\\ 0, & \text{if } |x - t| > 1. \end{cases}

For some odd integer kk, define

g(t)=kk+8f(x)cos(πx)dx.g(t) = \int_{k}^{k + 8} f(x)\,\cos(\pi x)\,dx.

Suppose g(t)g(t) has a local minimum at t=αt = \alpha with g(α)<0g(\alpha) < 0.

List all such α\alpha in increasing order as α1,α2,,αm\alpha_1, \alpha_2, \dots, \alpha_m (where mm is a positive integer), and assume

i=1mαi=45.\sum_{i=1}^m \alpha_i = 45.

Find the value of

kπ2i=1mg(αi).k - \pi^2 \sum_{i=1}^m g(\alpha_i).

이 문서를 언급한 문서들