메인 내용으로 이동

Multiplication Theorem

In Probability,

P(k=1nAk)=P(A1)P(A2A1)P(AnA1A2An1)P (\cap_{k=1}^{n} A_k) = P(A_1) P(A_2 | A_1) \cdots P(A_n | A_1 \cap A_2 \cdots A_{n-1})

if independent

P(k=1nAk)=k=1n(Ak)P (\cap_{k=1}^{n} A_k) = \prod\limits_{k=1}^n (A_k)

P(AB)=P(AB)P(B)=indP(A)P(A|B) = {P(A \cap B) \over P(B)} {=^{\text{ind}}} P(A)