Accessing Remote Jupyter at USC ISI
This guide provides instructions for accessing a Jupyter Notebook on a remote server and configuring a GPU for machine learning tasks using TensorFlow and PyTorch.
Accessing the Remote Jupyter Notebook
Prerequisites
- VPN connection, if required.
- SSH access to the server.
- Your server username (e.g.,
[email protected]
).
Steps to Access
-
Open Terminal:
- Windows: Use PowerShell or PuTTY.
- macOS/Linux: Use the Terminal app.
-
SSH Connection:
- Command:
ssh -L 8080:localhost:8080 [email protected]
- Replace
scho
with your server username.
- Command:
-
Navigate to Work Directory:
- Use
cd
to go to your directory:cd path/to/work/directory
- Use
-
Start Jupyter Notebook:
- Run:
jupyter lab --no-browser --port=8080
- Copy the provided URL.
- Run:
-
Access Notebook Locally:
- Paste the URL into your local browser.
Setting Up GPU for TensorFlow
Prerequisites
- TensorFlow and other packages installed.
- Knowledge of available GPU numbers (0 to 7).
Steps for TensorFlow
-
Check GPU Availability:
- In Jupyter, run:
!nvidia-smi
- In Jupyter, run:
-
Configure GPU in Notebook:
-
After loading packages, set GPU:
import os
import tensorflow as tf
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Choose an available GPU
physical_devices = tf.config.list_physical_devices('GPU')
print("Num GPUs Available: ", len(physical_devices))
if physical_devices:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
-
Setting Up GPU for PyTorch
Prerequisites
- PyTorch installed.
- Knowledge of available GPU numbers.
Steps for PyTorch
-
Check GPU Availability:
- Same as for TensorFlow, use
!nvidia-smi
.
- Same as for TensorFlow, use
-
Configure GPU in Notebook:
-
PyTorch automatically uses available GPUs, but you can specify one:
import torch
# Check if CUDA is available
if torch.cuda.is_available():
device = torch.device("cuda:0") # Replace 0 with your GPU number
print("Using GPU:", torch.cuda.get_device_name(0))
else:
device = torch.device("cpu")
print("Using CPU") -
Use
device
to move tensors or models to the selected device:model.to(device)
-
Notes
- For TensorFlow,
CUDA_VISIBLE_DEVICES
sets the specific GPU. - For PyTorch,
torch.device
is used to specify the GPU. - Always check GPU availability and usage before selecting one.