Skip to main content

Absolute Convergence

In Probability,

โˆ‘n=1โˆžan\sum\limits_{n=1}^{\infty} a_n converges absolutely if and only if โˆ‘n=1โˆžโˆฃanโˆฃ\sum\limits_{n=1}^{\infty} |a_n| converges.

Because โˆ’โˆ‘n=1โˆžโˆฃanโˆฃโ‰คโˆ‘n=1โˆžanโ‰คโˆ‘n=1โˆžโˆฃanโˆฃ- \sum\limits_{n=1}^{\infty} |a_n| \leq \sum\limits_{n=1}^{\infty} a_n \leq \sum\limits_{n=1}^{\infty} |a_n|,

If โˆ‘n=1โˆžan\sum\limits_{n=1}^{\infty} a_n converges absolutely, then it converges.

But even though โˆ‘n=1โˆžan\sum\limits_{n=1}^{\infty} a_n converges, it does not always imply it converges absolutely (conditional convergence). Example: {โˆ’1,12,โˆ’13,14,โˆ’15}\{{-1}, {1 \over 2}, -{1 \over 3}, {1 \over 4}, -{1 \over 5}\}