Convergence of Infinite SeriesIn Probability, ∑n=1∞an\sum\limits_{n=1}^{\infty} a_nn=1∑∞an converges if and only if the partial sum SN=∑n=1NanS_N = \sum\limits_{n=1}^{N} a_nSN=n=1∑Nan converges to a finite SN→SS_N \to SSN→S and SSS is finite.