Poisson ApproximationP(ฮป)=eโฮปฮปxx!P (\lambda) = {{e^{-\lambda} \lambda^x} \over x!}P(ฮป)=x!eโฮปฮปxโ bโdpb \rightarrow^d pbโdp if n>>1n >> 1n>>1, p<<1p << 1p<<1 and ฮป=np\lambda = npฮป=np In Probability, (nx)=n!x!(nโx)!{n \choose x} = {n! \over x! (n-x)!}(xnโ)=x!(nโx)!n!โ b(n,p)=Poisson(ฮป)ย whereย ฮป=npb(n, p) = \text{Poisson}(\lambda) ~ \text{where} ~ \lambda = npb(n,p)=Poisson(ฮป)ย whereย ฮป=np nโซ1ย andย pโช1n \gg 1 ~\text{and} ~ p \ll 1nโซ1ย andย pโช1 approximates binomial distribution. bโpโ โโบโ โnโซ1ย &ย pโช1ย &ย ฮป=npb \rightarrow p \iff n \gg 1 ~ \& ~ p \ll 1 ~ \& ~ \lambda = npbโpโบnโซ1ย &ย pโช1ย &ย ฮป=np where bbb is binomial and ppp is poisson