Poisson ApproximationP(λ)=e−λλxx!P (\lambda) = {{e^{-\lambda} \lambda^x} \over x!}P(λ)=x!e−λλx b→dpb \rightarrow^d pb→dp if n>>1n >> 1n>>1, p<<1p << 1p<<1 and λ=np\lambda = npλ=np In Probability, (nx)=n!x!(n−x)!{n \choose x} = {n! \over x! (n-x)!}(xn)=x!(n−x)!n! b(n,p)=Poisson(λ) where λ=npb(n, p) = \text{Poisson}(\lambda) ~ \text{where} ~ \lambda = npb(n,p)=Poisson(λ) where λ=np n≫1 and p≪1n \gg 1 ~\text{and} ~ p \ll 1n≫1 and p≪1 approximates binomial distribution. b→p ⟺ n≫1 & p≪1 & λ=npb \rightarrow p \iff n \gg 1 ~ \& ~ p \ll 1 ~ \& ~ \lambda = npb→p⟺n≫1 & p≪1 & λ=np where bbb is binomial and ppp is poisson