Negative Binomialrโฅ2r \geq 2rโฅ2 Xโ#ย ofย trialsย untilย theย rthย successX - \text{\# of trials until the rth success}Xโ#ย ofย trialsย untilย theย rthย success xโZ+x \in \mathbb{Z}^+xโZ+ xโ{r,ย r+1,ย r+2,โฏโ}x \in \{r, ~r+1, ~r+2, \cdots\}xโ{r,ย r+1,ย r+2,โฏ} P(X=x)=(xโ1rโ1)prโ1(1โp)xโrpP(X=x) = {{x-1} \choose {r-1}} p^{r-1} (1-p)^{x-r} pP(X=x)=(rโ1xโ1โ)prโ1(1โp)xโrp Where (xโ1rโ1)prโ1(1โp)xโr{{x-1} \choose {r-1}} p^{r-1} (1-p)^{x-r}(rโ1xโ1โ)prโ1(1โp)xโr is the rโ1r-1rโ1 successes out of x-1 trials, and ppp is the xxxth trial of rrrth success.