Skip to main content

Negative Binomial

rโ‰ฅ2r \geq 2

Xโˆ’#ย ofย trialsย untilย theย rthย successX - \text{\# of trials until the rth success}

xโˆˆZ+x \in \mathbb{Z}^+

xโˆˆ{r,ย r+1,ย r+2,โ‹ฏโ€‰}x \in \{r, ~r+1, ~r+2, \cdots\}

P(X=x)=(xโˆ’1rโˆ’1)prโˆ’1(1โˆ’p)xโˆ’rpP(X=x) = {{x-1} \choose {r-1}} p^{r-1} (1-p)^{x-r} p

Where (xโˆ’1rโˆ’1)prโˆ’1(1โˆ’p)xโˆ’r{{x-1} \choose {r-1}} p^{r-1} (1-p)^{x-r} is the rโˆ’1r-1 successes out of x-1 trials, and pp is the xxth trial of rrth success.