MomentsE[aX+b]=aE[X]+b\mathbb{E}[aX+b] = a\mathbb{E}[X] + bE[aX+b]=aE[X]+b V[aX+b]=a2VX\mathbb{V}[aX+b] = a^2 \mathbb{V}{X}V[aX+b]=a2VX Xโผฮณ(ฮฑ,ฮธ)X \sim \gamma(\alpha, \theta)Xโผฮณ(ฮฑ,ฮธ), E[Xk]=ฮ(ฮฑ+k)ฮ(ฮฑ)ฮธk\mathbb{E}[X^k] = {\Gamma(\alpha+k) \over \Gamma(\alpha)} \theta^kE[Xk]=ฮ(ฮฑ)ฮ(ฮฑ+k)โฮธk ฮ(ฮฑ+1)=ฮฑฮ(ฮฑ)\Gamma(\alpha+1) = \alpha \Gamma(\alpha)ฮ(ฮฑ+1)=ฮฑฮ(ฮฑ), ฮ(1)=1,ย ฮ(12)=ฯ\Gamma(1) = 1,~\Gamma({1 \over 2}) = \sqrt{\pi}ฮ(1)=1,ย ฮ(21โ)=ฯโ