Maximum Likelihood Estimation
f(D∣θ)
θ^ML=argmaxθg(x∣θ)=argmaxθlng(x∣θ)
θ^ML=argmaxθg(x1, x2, ⋯, xn∣θ)
=argmaxθk=1∏ng(xk∣θ) — i.i.d. / r.s.
=argmaxθk=1∑nlng(xk∣θ)
∂θ∂L∣θ=θ^ML=0
∴ Check ∂θ∂L∣θ=θ^ML<0
h(θ)^ML=h(θ^ML)
x1,⋯,xn∼Geometric(P) σ2^ML
p1^=Xn⇒p^=x1
σ2^ML=p2q=p21−p^ML=1−xn12xn1
Max-likelihood: Tries to give the best PDF.
Max-likelihood parameter as θ^
θ^ML=argmaxθf(x1,x2,⋯xn∣θ)=argmaxθlnf(x1,x2,⋯xn∣θ)=argmaxθL
Assuming IID
=lnk=1∏nf(xk∣θ)=argmaxθk=1∑nlnf(xk∣θ)
Maximum Likelihood Estimation
- consistent (convergent in probability)
- Asymptotically Normal
- Invariance Principle g(θ)ML^=g(θ^ML)