b(n, p)dP(λ) if n≫1 & p≪1 & λ=np
Proof
n→∞limb(n, p)=n→∞lim(xn)px(1−p)n−x=n→∞lim(n−x)! x!n!px(1−p)n−x
=n→∞limx!(n−x)!n!nxλx(1−nλ)n−x=x!λxn→∞lim(n−x)!n!nx1(1−nλ)n−x
=x!λxn→∞limnnnn−1nn−2⋯nn−x+1(1−nλ)n(1−nλ)−x
=x!λxn→∞lim1⋅n→∞limnn−1⋯n→∞limnn−x+1n→∞lim(1−nλ)nn→∞lim(1−nλ)−x
=x!λxn→∞lim(1+n−λ)n=x!λxe−λ