(p+q)n=k=0โnโ(knโ)pkqnโk
j=1โโโaj=1โaaโ,โฃaโฃ<1
SNโ=j=1โNโaj
SNโ=a+a2+โฏ+aN โ โ
aSNโ=a2+โฏaN+1 โ โก
If we subtract โก from โ , we get
SNโ=1โaaโan+1โ
k=1โโโkak=(1โa)2aโ
nโโlimโ(n1+xโ)n=ex
Number of Outcomes | With Replacement | Without Replacements |
---|
2 | Binomial (different when until*...) | Hypergeometric |
โฅ 3 | Multinomial | Multivariate Hypergeometric |
until*โ
- 1st success โ geometric
- rth success โ negative binomial
In Probability,
(p+q)n=k=0โnโ(knโ)pkqnโk
Base caseโ
Let n=1. Then
k=0โ1โ(k1โ)pkqnโk=(01โ)p0q1+(11โ)p1q0
Induction Hypothesisโ
Assume that (p+q)m=k=0โmโ(m1โ)pkqmโk. Let n=m+1. Then
(p+q)m+1=(p+q)(p+q)m=(p+q)k=0โmโ(m1โ)pkqmโk
pk=0โmโ(kmโ)pkqmโk+qk=0โmโ(kmโ)pkqmโk
k=0โmโ(kmโ)pk+1qmโk+k=0โmโ(kmโ)pkqmโk+1
Let j=k+1 and k=jโ1 for the first and j=k for the second sum. Then,
j=1โj=m+1โ(jโ1mโ)pjqm+1โj+j=0โj=mโ(jmโ)pjqmโj+1