(p+q)n=k=0∑n(kn)pkqn−k
j=1∑∞aj=1−aa,∣a∣<1
SN=j=1∑Naj
SN=a+a2+⋯+aN — ①
aSN=a2+⋯aN+1 — ②
If we subtract ② from ①, we get
SN=1−aa−an+1
k=1∑∞kak=(1−a)2a
n→∞lim(n1+x)n=ex
Number of Outcomes | With Replacement | Without Replacements |
---|
2 | Binomial (different when until*...) | Hypergeometric |
≥ 3 | Multinomial | Multivariate Hypergeometric |
until*
- 1st success → geometric
- rth success → negative binomial
In Probability,
(p+q)n=k=0∑n(kn)pkqn−k
Proof
Base case
Let n=1. Then
k=0∑1(k1)pkqn−k=(01)p0q1+(11)p1q0
Induction Hypothesis
Assume that (p+q)m=k=0∑m(m1)pkqm−k. Let n=m+1. Then
(p+q)m+1=(p+q)(p+q)m=(p+q)k=0∑m(m1)pkqm−k
pk=0∑m(km)pkqm−k+qk=0∑m(km)pkqm−k
k=0∑m(km)pk+1qm−k+k=0∑m(km)pkqm−k+1
Let j=k+1 and k=j−1 for the first and j=k for the second sum. Then,
j=1∑j=m+1(j−1m)pjqm+1−j+j=0∑j=m(jm)pjqm−j+1