Skip to main content

KSAT Benchmark

2017.30โ€‹

Let tt be a real number. Define the function f(x)f(x) by

f(x)={1โˆ’โˆฃxโˆ’tโˆฃ,ifย โˆฃxโˆ’tโˆฃโ‰ค1,0,ifย โˆฃxโˆ’tโˆฃ>1.f(x) = \begin{cases} 1 - |x - t|, & \text{if } |x - t| \le 1,\\ 0, & \text{if } |x - t| > 1. \end{cases}

For some odd integer kk, define

g(t)=โˆซkk+8f(x)โ€‰cosโก(ฯ€x)โ€‰dx.g(t) = \int_{k}^{k + 8} f(x)\,\cos(\pi x)\,dx.

Suppose g(t)g(t) has a local minimum at t=ฮฑt = \alpha with g(ฮฑ)<0g(\alpha) < 0.

List all such ฮฑ\alpha in increasing order as ฮฑ1,ฮฑ2,โ€ฆ,ฮฑm\alpha_1, \alpha_2, \dots, \alpha_m (where mm is a positive integer), and assume

โˆ‘i=1mฮฑi=45.\sum_{i=1}^m \alpha_i = 45.

Find the value of

kโˆ’ฯ€2โˆ‘i=1mg(ฮฑi).k - \pi^2 \sum_{i=1}^m g(\alpha_i).
Let $t$ be a real number. Define the function $f(x)$ by

$$
f(x) =
\begin{cases}
1 - |x - t|, & \text{if } |x - t| \le 1,\\
0, & \text{if } |x - t| > 1.
\end{cases}
$$

For some odd integer $k$, define

$$
g(t) = \int_{k}^{k + 8} f(x)\,\cos(\pi x)\,dx.
$$

Suppose $g(t)$ has a local minimum at $t = \alpha$ with $g(\alpha) < 0$.

List all such $\alpha$ in increasing order as $\alpha_1, \alpha_2, \dots, \alpha_m$ (where $m$ is a positive integer), and assume

$$
\sum_{i=1}^m \alpha_i = 45.
$$

Find the value of

$$
k - \pi^2 \sum_{i=1}^m g(\alpha_i).
$$

The correct answer is 21.

1998.29โ€‹

Suppose the two equations P(x)=0P(x) = 0 and Q(x)=0Q(x) = 0 have 77 and 99 distinct real roots, respectively.

Define the set

A={(x,y)โˆฃP(x)Q(y)=0ย andย Q(x)P(y)=0,x,yโˆˆR}. A = \{(x,y)\mid P(x)Q(y)=0 \text{ and } Q(x)P(y)=0, x,y\in\mathbb{R}\}.

This set AA is infinite. Consider the subset

B={(x,y)โˆฃ(x,y)โˆˆAย andย x=y}. B = \{(x,y)\mid (x,y)\in A \text{ and } x = y\}.

Let n(B)n(B) denote the number of elements of BB. Note that n(B)n(B) depends on the specific choice of P(x)P(x) and Q(x)Q(x).

Determine the maximum possible value of n(B)n(B).

Suppose the two equations $P(x) = 0$ and $Q(x) = 0$ have $7$ and $9$ distinct real roots, respectively.
Define the set

$$
A = \{(x,y)\mid P(x)Q(y)=0 \text{ and } Q(x)P(y)=0, x,y\in\mathbb{R}\}.
$$

This set $A$ is infinite. Consider the subset

$$
B = \{(x,y)\mid (x,y)\in A \text{ and } x = y\}.
$$

Let $n(B)$ denote the number of elements of $B$. Note that $n(B)$ depends on the specific choice of $P(x)$ and $Q(x)$.
Determine the maximum possible value of $n(B)$.


The answer is 15