Multiplication TheoremIn Probability, P(∩k=1nAk)=P(A1)P(A2∣A1)⋯P(An∣A1∩A2⋯An−1)P (\cap_{k=1}^{n} A_k) = P(A_1) P(A_2 | A_1) \cdots P(A_n | A_1 \cap A_2 \cdots A_{n-1})P(∩k=1nAk)=P(A1)P(A2∣A1)⋯P(An∣A1∩A2⋯An−1) if independent P(∩k=1nAk)=∏k=1n(Ak)P (\cap_{k=1}^{n} A_k) = \prod\limits_{k=1}^n (A_k)P(∩k=1nAk)=k=1∏n(Ak) P(A∣B)=P(A∩B)P(B)=indP(A)P(A|B) = {P(A \cap B) \over P(B)} {=^{\text{ind}}} P(A)P(A∣B)=P(B)P(A∩B)=indP(A)