Multiplication TheoremIn Probability, P(โฉk=1nAk)=P(A1)P(A2โฃA1)โฏP(AnโฃA1โฉA2โฏAnโ1)P (\cap_{k=1}^{n} A_k) = P(A_1) P(A_2 | A_1) \cdots P(A_n | A_1 \cap A_2 \cdots A_{n-1})P(โฉk=1nโAkโ)=P(A1โ)P(A2โโฃA1โ)โฏP(AnโโฃA1โโฉA2โโฏAnโ1โ) if independent P(โฉk=1nAk)=โk=1n(Ak)P (\cap_{k=1}^{n} A_k) = \prod\limits_{k=1}^n (A_k)P(โฉk=1nโAkโ)=k=1โnโ(Akโ) P(AโฃB)=P(AโฉB)P(B)=indP(A)P(A|B) = {P(A \cap B) \over P(B)} {=^{\text{ind}}} P(A)P(AโฃB)=P(B)P(AโฉB)โ=indP(A)