Skip to main content

Convergence of Alternating Series

In Probability,

โˆ‘n=1โˆž(โˆ’1)nan\sum\limits_{n=1}^{\infty} {(-1)^n a_n}

Check for two things:

  • akโ‰ฅak+1,ย โˆ€kโˆˆZa_k \geq a_{k+1}, ~ \forall k \in \mathbb{Z}
  • limโกnโ†’โˆžan=0\lim_{n \to \infty} a_n = 0

If both of them are true, then the series converges.