In Probability,
if {Hk} partitions Ω then
P(Hj∣E)=P(E)P(Hj∩E)=k∑P(Hk)P(E∣Hk)P(Hj)P(E∣Hj)
Hj is posterior in this case.
The Odds form of Bayes Theorem is
O(H∣E)=O(H)P(E∣HC)P(E∣H)
If Hk partitions Ω then
P(Hj∣E)=j∑P(E∣Hj)P(Hj)P(E∣Hk)P(Hk)