Limit of a SequenceIn Probability, an→a ⟺ ∀ϵ>0, ∃n0∈Z+:∀n≥n0, ∣an−a∣<ϵa_n \to a \iff ~ \forall \epsilon > 0, ~ \exists n_0 \in \mathbb{Z}^{+} : \forall n \geq n_0 , ~ |a_n - a| < \epsilonan→a⟺ ∀ϵ>0, ∃n0∈Z+:∀n≥n0, ∣an−a∣<ϵ