SA
Skip to main content

Approximation

In Probability,

lnn!=lnk=1nk=k1nlnkx=1nlnx dx\ln n! = \ln \prod\limits_{k=1}^n k = \sum\limits_{k-1}^n \ln k \approx \int_{x=1}^n \ln x ~dx

Using integration by parts

u dv=uvv du\int u ~dv = uv - \int v~du d(uv)=v du+u dvd(uv) = v~du + u~dv u=lnx, dv=1, du=1x, v=xu = \ln x,~ dv = 1,~ du = {1 \over x},~v=x x=1nlnx dx=[xlnxx1x dx]x=1n\int_{x=1}^n \ln x~dx = [{x \ln x - \int x {1 \over x} ~dx}]^n_{x=1} =[xlnxx]x=1n=nlnnn+1= [x \ln x - x ]^n_{x=1} = n \ln n - n + 1

Links to This Note