SA
Skip to main content

Set Theory

xAΩx \in A \subset \Omega

AC={xΩ, xA}A^C = \{x \in \Omega, ~ x \notin A \}

AB={xΩ, xA xB}A \cup B = \{x \in \Omega, ~ x \in A \vee ~ x \in B\}

AB={xΩ, xA& xB}A \cap B = \{x \in \Omega, ~ x \in A \& ~ x \in B\}

ABxA,xBA \subset B \leftrightarrow \forall x \in A, x \in B

A=BAB,BAA = B \leftrightarrow A \subset B, B \subset A

AB=ABCA - B = A \cap B^C

ABAABA \cap B \subset A \subset A \cup B

Links to This Note