Set Theoryx∈A⊂Ωx \in A \subset \Omegax∈A⊂Ω AC={x∈Ω, x∉A}A^C = \{x \in \Omega, ~ x \notin A \}AC={x∈Ω, x∈/A} A∪B={x∈Ω, x∈A∨ x∈B}A \cup B = \{x \in \Omega, ~ x \in A \vee ~ x \in B\}A∪B={x∈Ω, x∈A∨ x∈B} A∩B={x∈Ω, x∈A& x∈B}A \cap B = \{x \in \Omega, ~ x \in A \& ~ x \in B\}A∩B={x∈Ω, x∈A& x∈B} A⊂B↔∀x∈A,x∈BA \subset B \leftrightarrow \forall x \in A, x \in BA⊂B↔∀x∈A,x∈B A=B↔A⊂B,B⊂AA = B \leftrightarrow A \subset B, B \subset AA=B↔A⊂B,B⊂A A−B=A∩BCA - B = A \cap B^CA−B=A∩BC A∩B⊂A⊂A∪BA \cap B \subset A \subset A \cup BA∩B⊂A⊂A∪B