Skip to main content

Set Theory

xโˆˆAโŠ‚ฮฉx \in A \subset \Omega

AC={xโˆˆฮฉ,ย xโˆ‰A}A^C = \{x \in \Omega, ~ x \notin A \}

AโˆชB={xโˆˆฮฉ,ย xโˆˆAโˆจย xโˆˆB}A \cup B = \{x \in \Omega, ~ x \in A \vee ~ x \in B\}

AโˆฉB={xโˆˆฮฉ,ย xโˆˆA&ย xโˆˆB}A \cap B = \{x \in \Omega, ~ x \in A \& ~ x \in B\}

AโŠ‚Bโ†”โˆ€xโˆˆA,xโˆˆBA \subset B \leftrightarrow \forall x \in A, x \in B

A=Bโ†”AโŠ‚B,BโŠ‚AA = B \leftrightarrow A \subset B, B \subset A

Aโˆ’B=AโˆฉBCA - B = A \cap B^C

AโˆฉBโŠ‚AโŠ‚AโˆชBA \cap B \subset A \subset A \cup B

Links to This Note