Set TheoryxโAโฮฉx \in A \subset \OmegaxโAโฮฉ AC={xโฮฉ,ย xโA}A^C = \{x \in \Omega, ~ x \notin A \}AC={xโฮฉ,ย xโ/A} AโชB={xโฮฉ,ย xโAโจย xโB}A \cup B = \{x \in \Omega, ~ x \in A \vee ~ x \in B\}AโชB={xโฮฉ,ย xโAโจย xโB} AโฉB={xโฮฉ,ย xโA&ย xโB}A \cap B = \{x \in \Omega, ~ x \in A \& ~ x \in B\}AโฉB={xโฮฉ,ย xโA&ย xโB} AโBโโxโA,xโBA \subset B \leftrightarrow \forall x \in A, x \in BAโBโโxโA,xโB A=BโAโB,BโAA = B \leftrightarrow A \subset B, B \subset AA=BโAโB,BโA AโB=AโฉBCA - B = A \cap B^CAโB=AโฉBC AโฉBโAโAโชBA \cap B \subset A \subset A \cup BAโฉBโAโAโชB